Global well-posedness in L for the periodic Benjamin-Ono equation

نویسنده

  • Luc Molinet
چکیده

We prove that the Benjamin-Ono equation is globally well-posed in Hs(T) for s ≥ 0. Moreover we show that the associated flow-map is Lipschitz on every bounded set of Hs 0 (T), s ≥ 0, and even real-analytic in this space for small times. This result is sharp in the sense that the flow-map (if it can be defined and coincides with the standard flow-map on H∞ 0 (T)) cannot be of class C , α > 0, from Hs 0(T) into H s 0(T) as soon as s < 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp ill-posedness result for the periodic Benjamin-Ono equation

We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.

متن کامل

Well-posedness in H for the (generalized) Benjamin-Ono equation on the circle

We prove the local well posedness of the Benjamin-Ono equation and the generalized Benjamin-Ono equation in H(T). This leads to a global wellposedness result in H(T) for the Benjamin-Ono equation.

متن کامل

Control and Stabilization of the Benjamin-Ono Equation on a Periodic Domain

It was proved by Linares and Ortega in [24] that the linearized Benjamin-Ono equation posed on a periodic domain T with a distributed control supported on an arbitrary subdomain is exactly controllable and exponentially stabilizable. The aim of this paper is to extend those results to the full Benjamin-Ono equation. A feedback law in the form of a localized damping is incorporated in the equati...

متن کامل

Global Well-posedness of the Benjamin–ono Equation in Low-regularity Spaces

whereH is the Hilbert transform operator defined (on the spaces C(R : H), σ ∈ R) by the Fourier multiplier −i sgn(ξ). The Benjamin–Ono equation is a model for one-dimensional long waves in deep stratified fluids ([1] and [16]) and is completely integrable. The initial-value problem for this equation has been studied extensively for data in the Sobolev spaces H r (R), σ ≥ 0. It is known that the...

متن کامل

Global well-posedness in the Energy space for the Benjamin-Ono equation on the circle

We prove that the Benjamin-Ono equation is well-posed in H(T). This leads to a global well-posedeness result in H(T) thanks to the energy conservation. Résumé. Nous montrons que l’équation de Benjamin-Ono est bien posée dans H(T). Il découle alors de la conservation de l’énergie que la solution existe pour tout temps dans cette espace.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006